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1 Introduction

This report documents the preparation of a contour map and particle track for the Culebra Member of
the Rustler Formation in the vicinity of the Waste Isolation Pilot Plant (WIPP), for inclusion in the 2009

Annual Site Environmental Report (ASER). The driver for this analysis is the draft of the Stipulated Final
Order sent to the New Mexico Environment Department (NMED) on May 28, 2009 (Moody, 2009).

Beginning with the ensemble of 100 calibrated MODFLOW transmissivity (T), horizontal anisotropy (A),
and areal recharge (R) fields (Hart et al., 2009) used in WIPP performance assessment (PA), 3 average
parameter fields are used as input to MODFLOW to simulate freshwater heads within and around the
WIPP land withdrawal boundary (LWB). PEST is used to adjust a subset of the boundary conditions in
the ensemble-average model to obtain the best-fit match between the observed freshwater heads from
September 2008 and the model-predicted heads. The output of the averaged, PEST-calibrated
MODFLOW model is both contoured and used to compute an advective particle trace forward from the
WIPP waste handling shaft.
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2 Scientific Approach

2.1 Overview
Steady-state groundwater flow simulations are carried out using the much the same software and
approach used in the analysis report for AP-114 Task 7 (Hart et al., 2009) to create the calibrated fields
used as inputs — see Table 1 for a summary of all software used in this analysis. The MODFLOW
parameter fields (including transmissivity (T), anisotropy (A), and recharge (R)) used here are an
ensemble average of the Culebra parameter fields used for WIPP PA in the CRA-2009 performance
assessment baseline calculations (PABC). To clearly distinguish between the two MODFLOW models,
the original MODFLOW model, which consists of 100 realizations of calibrated parameter fields (Hart et
al., 2009), will be referred to as the “PA MODFLOW model”. The model derived here from the PA
MODFLOW model, used to construct the resulting contour map and particle track, is referred to as the
“averaged MODFLOW model”. The calibrated model T, A and R input fields, model boundary conditions,
and other model input files are appropriately averaged across all 100 calibrated realizations to produce
a single averaged steady-state MODFLOW flow model that can be used to predict regional Culebra
groundwater flow across the WIPP site. k

The calibration process that resulted in the 100 model realizations of the PA MODFLOW model used
PEST to adjust spatially variable model parameters, while assuming fixed MODFLOW boundary
conditions. The calibration targets for the PA MODFLOW model were both snapshots of undisturbed
heads across the site and transient head responses to large-scale pumping tests. Hart et al. (2009)
describe the forward model setup and PEST calibration effort for the CRA-2009 PABC. An analogous but
much simpler process is used in the averaged MODFLOW model; here PEST is used to modify a subset of
the MODFLOW boundary conditions (see boundaries marked in red on Figure 1). The calibration targets
for PEST associated with the average MODFLOW model are the observed September 2008 freshwater
heads at Culebra monitoring wells. Boundary conditions are modified while holding spatially variable
model parameters (T, A, and R) constant; in the calibration of the PA MODFLOW model the boundary
conditions were fixed, while adjusting the spatially variable parameters.

Table 1. Software used

Software Version Description Status
Acquired; qualified under NP 19-1
MODFLOW-2 .
0 000 |16 Flow model (Harbaugh et al., 2000)
Developed; qualified under NP 19-1
PEST .
9.11 Inverse model (Doherty, 2002)
DTRKMF 1.00 Particle tracker Developed; qualified under NP 19-1
Gol
olden Software 9 Contouring Commercial off the shelf
Surfer
Gnuplot 4.2 Plotting Commercial off the shelf
Microsoft Excel 2007 Plotting Commerecial off the shelf
Python 234 Scripting Language | Commercial off the shelf
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Figure 1. MODFLOW-2000 model domain, adjusted beundary conditians shown in red, contour area outlined in green.

The resulting heads from the PEST-calibrated ensemble-average flow model are contoured over an area
surrounding the WIPP site using Surfer (a subset of the complete MODFLOW model domain - see the
green rectangle surrounding the WIPP LWB in Figure 1). The trace made by a conservative (i.e., non-
dispersive and non-reactive) particle released from the waste handling shaft to the WIPP land
withdrawal boundary is computed from the resulting flow field in MODFLOW using DTRKMF, and also
plotted with Surfer. Scatter plots statistics summarizing the fit of the PEST-calibrated model to the
observed freshwater head at Culebra monitoring wells are created in Gnuplot and Excel. MODFLOW,
PEST, DTRKMF, and the Bash and Python scripts written for this work were executed on the PA Linux
cluster (alice.sandia.gov), while the commercial-off-the-shelf software Surfer, Gnuplot and Excel
were executed on a Windows XP desktop computer with an Intel Xenon CPU.

2.2 Creating Ensemble Average MODFLOW Simulation
An ensemble-average MODFLOW model is used to compute both the freshwater head and flow vectors
across the model domain; the heads are then contoured and the cell-by-cell flow vectors are used to
compute particle tracks. The ensemble-averaged inputs are used to create a single average simulation
that produces a single output, rather than averaging the 100 individual outputs of the Culebra flow
model used for WIPP PA.
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The MODFLOW model grid is a single layer, comprised of 307 rows and 284 columns, each model cell
being 100 meters square. The modeling area spans 601,700 to 630,000 meters in the east-west
direction, and 3,566,500 to 3,597,100 meters in the north-south direction, both in UTM NAD27
coordinates (zone 13).

The calibrated T, A, and R parameter fields from the PA MODFLOW model were checked out of the CVS
repository using the checkout average run_modflow.sh script (all scripts are listed completely
in the Appendix; input files are available on the attached media). The model inputs can be divided into
two groups. The first group is the model inputs that are the same across all 100 calibrated realizations;
these include the model grid definition, the boundary conditions, and the model solver parameters. The
second group is the model inputs that are different for each realization; these include transmissivity (T),
horizontal anisotropy (A), and vertical recharge (R). The constant model inputs in the first group are
used directly in the averaged MODFLOW model (checked out from the CVS repository), while the inputs
in the second group were averaged across all 100 calibrated model realizations using the Python script
average realizations.py. All three averaged parameters were log transformed before being
averaged, since they vary over multiple orders of magnitude.

2.3 Boundary Conditions
The boundary conditions taken from the PA MODFLOW model are used as the baseline condition, from
which PEST calibration proceeds. There are two types of boundary conditions in both MODFLOW
models. The first type of condition includes geologic or hydrologic boundaries, which correspond to
known physical features in the flow domain. The no-flow boundary along the axis of Nash Draw is a
hydrologic boundary (i.e., the boundary along the dark gray region in Figure 1). Also, the constant head
boundary along the halite margin corresponds to a geologic boundary (i.e., the eastern irregular
boundary adjoining the light gray region in Figure 1).

Physical boundaries are believed to be well known, and are not adjusted in the PEST calibration. The
second type of boundary condition includes the constant-head cells along the rest of the model domain;
the linear southern, southwestern, and northern boundaries that coincide with the rectangular frame
surrounding the model domain are all of this type (shown as a heavy red line in Figure 1). The value of
specified head used along this second boundary type is adjusted in the PEST calibration process.

The Python script boundary_ types.py is used to distinguish between the two different types of
specified head boundary conditions based on the specified head value used in the PA MODFLOW model.
All constant-head cells (specified by a value of -1 in the MODFLOW IBOUND array from the PA
MODFLOW model) that have a starting head value greater than 1000 m (corresponding to the land
surface) are left fixed and not adjusted in the PEST optimization. The remaining constant-head cells are
distinguished by setting their IBOUND array value to -2 (which is still interpreted as a constant-head
value by MODFLOW, but allows simpler discrimination between boundary conditions in scripts
elsewhere).
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Using the output from boundary_types.py, the Python script sur face 02 extrapolate.py
computes the heads at active (IBOUND=1) and adjustable constant-head boundary condition cells
(IBOUND=-2), given parameter values for the surface to extrapolate.

2.4 PEST Calibration of Averaged MODFLOW Model to Observations
There are three major types of inputs to PEST. The first type of input includes the set of observed
September 2008 freshwater head values used as targets for the PEST calibration. The second class of
inputs includes the entire MODFLOW model setup derived from the PA MODFLOW model and described
in the previous section, along with any pre- or post-processing scripts or programs needed; this
comprises the forward model that PEST runs repeatedly to estimate sensitivities of model outputs to
model inputs. The third type of input includes the PEST configuration files, which include parameter and
observation groups, indicating which parameters in the MODFLOW model will be adjusted in the inverse
simulation.

Freshwater head values used as targets for the PEST calibration were collected in September 2008
(Siegel, 2009) and are summarized in Table 2.
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Table 2. Calibration targets used in PEST, from Siegel (2009).

Adjusted Adjusted .

Well 1.D. Date Fresjhwater Fresjhwater Dﬁ:::y

Head Head (g Icm°)

(ft amsl) {m amsl)

AEC-7 09/22/08 3064.06 933.93 1.078
C-2737 (PIP) | 09/24/08 3023.61 921.60 1.029
ERDA-9 09/24/08 3033.97 924.75 1.067
H-02b2 09/24/08 3050.51 929.79 1.014
H-03b2 09/24/08 3015.20 919.03 1.042
H-04b 09/24/08 3006.82 916.48 1.015
H-05b 09/22/08 3081.33 939.19 1.093
H-06bR 09/23/08 3074.22 937.02 1.036
H-07b1 09/23/08 2999.24 914.17 1.002
H-09¢ (PIP) 09/23/08 2997.25 913.56 1.001
H-10c 09/23/08 3024.16 921.72 1.001
H-11b4 09/22/08 3009.92 917.42 1.070
H-12 09/23/08 3007.71 916.75 1.097
H-15R 08/15/08 3045.09 928.14 1.199
H-16 09/25/08 3050.45 929.78 1.039
H-17 09/22/08 3007.52 916.69 1.133
H-19b0 09/24/08 3015.69 919.18 1.068
IMC-461 09/23/08 3046.33 928.52 1.005
SNL-01 09/23/08 3085.69 940.52 1.033
SNL-02 09/23/08 3074.57 937.13 1.012
SNL-03 09/23/08 3081.17 939.14 1.023
SNL-05 09/23/08 3077.77 938.11 1.010
SNL-08 09/22/08 3055.32 931.26 1.103
SNL-09 09/22/08 3057.49 931.92 1.024
SNL-10 09/22/08 3056.14 931.51 1.011
SNL-12 09/23/08 3003.45 915.45 1.005
SNL-13 09/22/08 3012.72 918.28 1.027
SNL-14 09/22/08 3006.17 916.28 1.048
SNL-16 09/22/08 3010.72 917.67 1.010
SNL-17 09/23/08 3007.36 916.64 1.006
SNL-18 09/23/08 3082.59 939.57 1.028
SNL-19 09/23/08 3073.61 936.84 1.003
WIPP-11 09/22/08 3084.85 940.26 1.038
WIPP-13 09/22/08 3081.86 939.35 1.053
WIPP-19 09/24/08 3063.27 933.68 1.044
WIPP-25 (PIP) | 09/23/08 3069.43 935.56 1.011
WQSP-1 09/24/08 3078.05 938.19 1.048
WQSP-2 09/24/08 3086.54 940.78 1.048
WQSP-3 09/24/08 3076.08 937.59 1.146
WQSP-4 09/24/08 3016.16 919.33 1.075
WQSP-5 09/24/08 3013.67 918.57 1.025
WQSP-6 09/24/08 3022.96 921.40 1.014
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To minimize the number of estimable parameters, and to ensure a degree of smoothness in the
constant-head boundary condition values, a parametric surface is used to extrapolate the heads to the
estimable boundary conditions. The surface is of the same form described in the analysis report for AP-
114 Task 7. The parametric surface is given by the following equation:

hyy = A+ B+ (y + D =sign(y) = abs(y)e*Poment) + C(E * x3 + F x x? — x)

where sign(y) is the function returning 1 for y>0, -1 for y<0 and O for y=0 and x and y are coordinates
scaled to the range -1<{x,y}<1. In Hart et al. (2009), the values A=928.0, B=8.0, C=1.2, D=1.0,
exponent=0.5, E=1.0, and F=-1.0 are used with the above equation.

PEST was then used to estimate the values of parameters A,B,C,D,E,F, and exponent given the observed
heads in Table 2. The Python script surface 02 extrapolate.py was used to compute the
MODFLOW starting head input file (which is also used to specify the constant-head values) from the
parameters A-F and exponent. Each forward run of the forward model corresponded to a call to the
Bash script run_02_model. This script called the surface 02 extrapolate.py script, the
MODFLOW-2000 v1.6 executable, and the qualified PEST utility mod2obs . exe, which is used to extract
and interpolate model-predicted heads from the MODFLOW output files at observation well locations.

The PEST-specific input files (the third type of input) were generated from the observed heads using the
Python script create pest 02 input.py. The PEST input files include the instruction file (how to
read the model output), the template files (how to write the model input files), and the PEST control file
(listing the ranges and initial values for the estimable parameters and the weights associated with
observations).

2.5 Figures Generated from Calibrated MODFLOW Model
The MODFLOW model is run predicatively using the ensemble-averaged model parameters, along with
the PEST-calibrated boundary conditions. The resulting cell-by-cell flow budget is then used by DTRKMF
to compute a particle track from the waste handling shaft to at least the edge of the WIPP land
withdrawal boundary. The Python script convert dtrkmf output for surfer.py converts
the LK cell-based results of DTRKMF into a UTM x and y coordinate system, saving the results in the
Surfer blanking file format to facilitate plotting with Surfer. The heads in the binary MODFLOW output
file are converted to an ASCII Surfer grid format using the Python script head_bin2ascii.py.

The resulting particle trace and contours of the model-predicted head are plotted using Surfer 9 for an
area including the WIPP land withdrawal boundary, similar to the region shown in previous versions of
the ASER (e.g., see Figure 6.11 in (DOE, 2008)), see green outline in Figure 1. The modeled heads
extracted from the MODFLOW output by mod2obs . exe are then merged into a common file for
plotting using the Python scriptmerge observed modeled heads.py.
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Figure 2. Model-generated September 2008 freshwater head contours with observed head listed at each well (5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB
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Figure 3. MODFLOW-modeled heads for entire model domain (10-foot contour interval). Green rectangle indicates region
contoured in Figure 2, black square is WIPP LWB.,
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3 Results

3.1 Freshwater Head Contours
The model-generated freshwater head contours in Figure 2 show the known characteristics of
groundwater flow in the Culebra at the WIPP site. There is a roughly east-west trending band of steeper
gradients, corresponding to known lower transmissivities. The uncontoured region in the eastern part
of the figure corresponds to the portion of the Culebra that is located stratigraphically between halite in
other members of the Rustler Formation (Tamarisk Member above and Los Medafios Member below).
This region east of the “halite margin” is represented as having high head but extremely low
permeability, essentially serving as a no-flow boundary in this area.

3.2 Particle Track
The heavy blue line in Figure 2 shows the DTRKMF-predicted path a water particle would take through
the Culebra from the coordinates corresponding to the WIPP waste handling shaft to the land
withdrawal boundary (a computed path length of 4.079 km). Assuming a thickness of 4 m for the
Culebra and a constant porosity of 16%, the travel time to the WIPP LWB is 5,715 years (output from
DTRKMF is adjusted from a 7.75-m Culebra thickness), for an average velocity of 0.71 m/yr.

3.3 Measured vs. Modeled Fit
The scatter plot in Figure 4 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green “x”s, and other wells within the MODFLOW model domain but distant
from the WIPP site are given by a blue asterisk. These groupings were utilized in the PEST calibration;
higher weights (2.5) were given to wells inside the LWB, and lower weights (0.4) were given to wells
distant to the WIPP site, while wells in the middle received an intermediate weight (1.0). This allowed
PEST to improve the fit of the model to observed heads inside the area contoured in Figure 2, at the
expense of fitting wells closer to the boundary conditions (i.e., wells.not shown in Figure 2).

The central diagonal line in Figure 4 represents a perfect model fit (1:1 or 45-degree slope); the two lines
on either side of this represent a 1-m misfit above or below the perfect fit. Wells more than 1.5 m from
the 1:1line are labeled. AEC-7 has a large misfit (14 m), for two reasons. First, this well has historically
had an anomalously low freshwater head elevation, lower than wells around it in all directions.
Secondly, it did not have a May 2007 observation (due to ongoing well reconfiguration activities) and
therefore was not included as a calibration target in the PA MODFLOW model calibration. The
ensemble-average T, A, and R fields used here were not calibrated to accommodate this observation.
This well is situated in a low-transmissivity region, and near the constant-head boundary associated with
the halite margin, therefore PEST will not be able to improve this fit solely through adjustment of the
boundary conditions indicated with red in Figure 1.
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The R? value for the best-fit line through the measured vs. modeled data inside the WIPP LWB only is
0.991 (computed in Excel) and the slope of this best-fit line is 1.000. The R? value for a best-fit line
through only the data from the intermediate zone is 0.993, with a slope of 0.999. The R? value for the
best-fit line through the distant wells only is 0.8975, with a slope of 1.001. The R’ for the best-fit line
through all wells together is 0.944, with a slope of 1.000.

7
M inside LWB & <3km from WIPP LWB

6 = all wells

Frequency

-0 9 8 -7 6 5 4 -3 -2 -1 0 1 2
Measured-Modeled (ft)

15

inside WIPP LWB < 3km WIPP LWB > 3km WIPP LWB
10

Measured-Modeled (ft)
[~

-10

AEC-7 @ -45.9
-15 @

Figure 5 and Figure 6 show the distribution of errors resulting from the PEST-adjusted fit to observed
data. The distribution in Figure 5 is roughly symmetric about 0, indicating there is not a strong bias,
although the distribution is approximately bimodal.

Aside from AEC-7, and to a lesser degree some other distant wells whose modeled values do not greatly
impact the contours shown in Figure 2, the model fit to the September 2008 observations is very good.
The ensemble-average model captures the average Culebra behavior, while the PEST calibration
improved the model fit to the specific September 2008 observations.
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this script first exports the 4 parameter fields (transmissivity (T), anisotropy (A), recharge (R), and
storativity (S)) from CVS for each of the 100 realizations of MODFLOW, listed in the file keepers (see
lines 17-26 of script). Some of the realizations are inside the Update or Update2 subdirectories in
CVS, which complicates the directory structure. An equivalent list keepers short is made from
keepers, and the directories are moved to match the flat directory structure (lines 31-53). At this
point the directory structure has been modified but the MODFLOW input files checked out from CVS are
unchanged.

The Python script average realizations.py (§A-4.2)is called, which first reads in the
keepers_short list, then reads in each of the 400 input files and computes the arithmetic average of
the base-10 logarithm of the value at each cell across the 100 realizations. The 400 input files are saved
as a flattened 2D matrix, in row-major order. The exponentiated result is saved in 4 parameter fields,
each with the extension . avg instead of .mod. A single value from each file, corresponding to either
the cell in the southeast corner of the domain (input file row 87188 = model row 307, model column 284
for Kand A) or on the west edge of the domain (input file row 45157 = model row 161, model column 1
for Rand S) is saved in the text file parameter representative values.txt toallow
checking the calculation in Excel, comparing the results to the value given at the same row of the
.avg file. The value in the right column of Table 3 can be found by taking the geometric average of the
values in the text file, which are the values from the indicated line of each of the 100 realizations.

Table 3. Averaged values for representative model cells

Field Input file row ~ Model row Model column _Geometricaverage
K 87188 307 284 9.2583577E-09
A 87188 307 284 9.6317478E-01
R 45157 161 1 1.4970689E-19
s 45157 161 1 4.0388352E-03

Figure 8 shows plots of the average log10 parameters, which compare with similar figures in Hart
(2009); inactive regions <1.0E-15 were reset to 1.0 to improve the plotted color scale. The rest of the

calculations are done with these averaged fields.
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(surface par params.ptf), which shows PEST how to write the input file for the surface
extrapolation script; 3) the PEST parameter file (surface par params.par), which lists the
starting parameter values to use when checking the PEST input; 4) the PEST control file

(bc_adjust 2008ASER.pst), which has PEST-related parameters, definitions of extrapolation
surface parameters, and the observations and weights that PEST is adjusting the model inputs to fit. The
observed heads are read as an input file in the PEST borehole sample file format

(meas_head 2008ASER.smp), and the weights are read in from the input file

(obs_loc 2008ASER.dat).

PEST runs the “forward model” many times, adjusting inputs and reading the resulting outputs using the
instruction and template files created above. The forward model actually consists of a Bash shell script
(run_02 model) that simply calls a pre-processing Python script sur face 02 extrapolate.py
(§A-4.5), the MODFLOW-2000 executable, and the PEST utility mod2obs . exe as a post-processing
step. The script redirects the output of each step to /dev/null to minimize screen output while
running PEST, since PEST will run the forward model many dozens of times.

The pre-processing Python script surface 02 extrapolate.py reads the new IBOUND array
created in a previous step (with -2 now indicating which constant head boundaries should be modified),
the initial head file used in AP-114 Task 7 (init_head orig.mod), two files listing the relative X and
Y coordinates of the model cells (rel {x,y} coord.dat), and an input file listing the coefficients of
the parametric equation used to define the initial head surface. This script then cycles over the
elements in the domain, writing the original starting head value if the IBOUND value is -1 or 0, and
writing the value corresponding to the parametric equation if the IBOUND value is -2 or 1. Using the
parameters corresponding to those used in AP-114 Task 7, the output starting head file should be
identical to that used in AP-114 Task 7.

After PEST has converged to the optimum solution for the given observed heads and weights, it runs the
forward model one more time with the optimum parameters. The post-processing Python scripts for
creating the Surfer ASCII grid file and Surfer blanking file from the MODFLOW and DTRKMF output are
run and the results are plotted in Surfer.
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A-1 Input Files

input file name

file type

description

average realizations.py

Python script

average 100 realizations

boundary_types.py

Python script

distinguish different BC types

checkout_average run modflow.sh

Bash script

main routine: checkout files, run

MODFLOW and PEST, call Python scripts

convert_dtrkmf_output_for_surfer.py

Python script

convert DTRKMF 1J output
to Surfer XY blanking format

create_pest_02_input.py

Python script

create PEST input files from observed data

dtrkmf.in

input listing

responses to DTRKMF prompts

head_bin2ascii.py

Python script

convert MODFLOW binary
output to Surfer ASCII grid format

keepers

input

listing of 100 realizations from CVS

meas_head_2008ASER. smp

input

observed September 2008 heads
in mod2obs.exe bore sample file format

merge_observed modeled_heads.py

Python script

paste observed head and model-generated
heads into one file

mod2obs_files.dat

file listing

files needed to run mod2obs.exe

mod2obs_head.in

input listing

responses to mod2obs.exe prompts

modflow_files.dat

file listing

files needed to run MODFLOW

obs_loc_2008ASER.dat input listing of wells and geographic groupings
pest_02_files.dat file listing files needed to run PEST
rel_x_coord.dat input relative coordinate 1 < x <1
rel_y_coord.dat input relative coordinate 1 <y <1

run_02_model

Bash script

PEST model: execute MODFLOW and
do pre- and post-processing

settings.fig input mod2obs. exe input file
spec_domain.spc input mod2obs . exe input file
spec_wells.crd input mod2obs . exe input file

surface_02_extrapolate.py

Python script

compute starting head from
parameter and coordinate inputs

wippctrl.inp

input

DTRKMF input file

Table A-1: Input Files
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A-2  Output Files

output file name

file type

description

ASER boundary{,_state_plane}.bln

Surfer
blanking file

coordinates defining contouring area
in UTM and state plane coordinates

contour map_with_particle_feet.srf

Surfer Plot file

plot of local contours

contour map_with_particle.emf

enhanced metafile

plot of local contours

contours_whole_domain.srf

Surfer Plot file

plot of regional contours

contours_whole_domain.emf

enhanced metafile

plot of regional contours

dtrk_output_pest_02{, state plane}.bln

Surfer
blanking file

coords defining particle track: output from
convert_dtrkmf_output_for_surfer.py
in UTM & state plane (converted via Surfer)

modeled_head pest_02.grd

Surfer grid file

model-generated heads:
output from head_bin2ascii.py

modeled_head_pest_02_ ...
contours_feet_UTM.grd

Surfer grid file

modeled_head_pest_02.grd
contour values in feet

modeled_head_pest_02_...
contours_feet_state_plane.grd

Surfer grid file

modeled_head_pest_02.grd
projected to state plane coords using Surfer

modeled_vs_observed_head.xlsx

Excel spreadsheet

modeled_vs_observed_head_pest_02.txt
plotted for histograms & regression R? values

modeled_vs_observed_head pest_02.txt

text file

output of merge_observed modeled heads.py

parameter_representative_values.txt

run control

point extracted from each realization

plot_scatter_plots.gnu

gnuplot input

input for plotting scatter pest_02_feet.emf

scatter_pest_02_feet.emf

enhanced metafile

output from gnuplot

wipp_boundary{, _state_plane}.bln

Surfer
blanking file

coordinates defining WIPP LWB
in UTM and state plane coordinates

well data_ with names_and observed.dat

coords/names

well coordinates and names for plotting

Table A-2: Output Files
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A-3 Directory Listings

C:\>dir input

Volume in drive C is DriveC
Volume Serial Number is 542A-10F7
Directory of C:\input

08/28/2009
08/28/2009
08/28/2009
08/25/2009
08/25/2009
08/25/2009
08/25/2009
08/07/2009
08/25/2009
08/07/2009
08/26/2009
08/07/2009
08/07/2009
08/07/2009
08/07/2009
08/07/2009
08/07/2009
08/07/2009
08/07/2009
08/25/2009
08/07/2009
08/07/2009
08/07/2009
08/25/2009
08/07/2009

03:
03:
03:
01:
12:
01:
01:
11:
01:
11:
11:
12:
11:
11:
11:
11:
11:
11:
11:
01:
11:
11:
11:
01:02 PM
11:17 AM

23 File(s)

2 Dir(s)

26
26
06
00
58
04
01
17
03
17
04
16
18
25
18
26
18
18
18
02
19
19
19

PM
PM
PM
PM
PM
PM
PM
AM
PM
AM
AM
PM
AM
AM
AM
AM
AM
AM
AM
PM
AM
AM
AM

<DIR>
<DIR>

2,
2,
6,

2,
3,

1,
1,

2,397,

2,397,

1,
2,

057
088
650
630
514

48
862
091
497
437

76
138
372
390
182
670
528
295

26

47
659
463
506

average_realizations.py
boundary_types.py
checkout_average_run_modflow.sh
convert_dtrkmf_output_for_surfer.py
create_pest_02_input.py
dtrkmf.in

head_bin2ascii.py

keepers

meas_head_2008ASER. smp
merge_observed_modeled_heads.py
mod2obs_files.dat
mod2obs_head. in
modflow_files.dat
obs_loc_2008ASER.dat
pest_02_files.dat
rel_x_coord.dat

rel_y_coord.dat

run_02_model

settings.fig

spec_domain.spc

spec_wells.crd
surface_02_extrapolate.py
wippctrl.inp

4,822,226 bytes
163,963,347,968 bytes free
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C:\output>dir

Volume in drive C is DriveC
Volume Serial Number is 542A-10F7
Directory of C:\output

08/28/2009 03:47 PM <DIR>
08/28/2009 03:47 PM <DIR> ..
08/28/2009 01:30 PM 548,148 contours_whole_domain.emf

08/28/2009 01:30 PM 947,380 contours_whole_domain.srf
08/28/2009 01:43 PM 684,880 contour_map_with_particle.emf
08/28/2009 01:43 PM 1,183,187 contour_map_with_particle_feet.srf
08/26/2009 11:44 AM 1,133,833 modeled_head_pest_02.grd
08/28/2009 01:33 PM 697,604 modeled_head_pest_02_contours_feet_state_plane.grd
08/28/2009 01:29 PM 1,577,862 modeled_head_pest_02_contours_feet_UTM.grd
08/26/2009 11:44 AM 1,077 modeled_vs_observed_head_pest_02.txt
08/28/2009 01:11 PM 30,102 modeled_vs_observed_head_pest_02.xlsx
08/28/2009 03:08 PM 9,081 parameter_representative_values.txt
08/28/2009 12:46 PM 2,451 plot_scatter_plots.gnu
08/28/2009 12:48 PM 33,900 scatter_pest_02_feet.emf
08/28/2009 03:18 PM <DIR> state_plane_data
08/28/2009 03:18 PM <DIR> utm_data
08/28/2009 01:25 PM 2,701 well_data_with_names_and_observed.dat

13 File(s) 6,852,206 bytes

4 Dir(s) 153,963,302,912 bytes free
C:\>dir output\state_plane_data
Volume in drive C is DriveC
Volume Serial Number is 542A-10F7
Directory of C:\output\state_plane_data

08/28/2009 03:18 PM <DIR>
08/28/2009 03:18 PM <DIR> ..
08/24/2009 12:59 PM 168 ASER_boundary_state_plane.bln

08/28/2009 01:36 PM 6,934 dtrk_output_pest_02_state_plane.bln
08/24/2009 12:59 PM 166 wipp_boundary_state_plane.bln
3 File(s) 7,268 bytes

2 Dir(s) 153,963,360,256 bytes free

C:\>dir output\utm_data

Volume in drive C is DriveC
Volume Serial Number is 542A-10F7
Directory of C:\output\utm_data

08/28/2009 03:18 PM <DIR>
08/28/2009 03:18 PM <DIR> ..
07/31/2009 03:57 PM 85 ASER_boundary.bln

08/26/2009 11:44 AM 5,412 dtrk_output_pest_02.bln
04/13/2009 10:08 AM 105 wipp_boundary.bln
3 File(s) 5,602 bytes

2 Dir(s) 153,963,360,256 bytes free
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A-4 Script Source Listing

A-4.1 Bash shell script checkout_average run modflow.sh

#!/bin/bash

# this script makes the following directory substructure

#

# current_dir \———— Outputs (calibrated parameter fields — INPUTS)

# \——— Inputs (other modflow files — INPUTS)

# \—— original_average (foward sim wusing average fields)
# \— bin (MODFLOW and DIRKMF binaries)

# \— pest_0? (pest—adjusted results)

eChO ([ ol ool ool alialialialialiatta ot aliel n

echo " checking out T fields"

echo " """~~~ omsssas s saas n

# these will checkout the calibrated parameter—field data into subdirectories

# checkout things that are different for each of the 100 realiztaions
for d in ‘cat keepers®
do
cvs —d /nfs/data/CVSLIB/ Tfields checkout Outputs/${d}/modeled_{K,A,R,S} _field .mod
done

# checkout MODFLOW input files that are constant for across all realizations

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/elev_{top,bot}.mod

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/init_{bnds.inf 6 head.mod}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_culebra.{lmg,lpf}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_head.{ba6 ,nam,oc,dis,rch}

# modify the path of "updated” T-fields , so they are all at the
# same level in the directory structure (simplifying scripts elsewhere)

if [ —a keepers_short |
then
rm keepers_short
fi
touch keepers_short

3

for d in ‘cat keepers
do
bn=*‘basename ${d}*
# test whether it is a compount path
if [ ${d} != ${bn} |
then
dn=‘dirname ${d}‘
mv ./Outputs/${d} ./Outputs/

# put an empty file in the directory to indicate
# what the directory was previously named

touch ./Outputs/${bn}/${dn}
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49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

fi
# create a keepers list without directories
echo ${bn} >> keepers_short
done
eChO I A A~ AAAAAAAAAAAAAAAAAAAAAAAA~AA~AA~AA~AA~AAAAAAANANAA n

echo " perform averaging across all realizations "
echo "

python average_realizations.py

# checkout MODFLOW / DIRKMF ezxecutables

cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/mf2k/mf2k_1.6.release

cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/dtrkmf/dtrkmf_v0100

# check out pest and obsZ2mod binaries

cd bin

cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/pest.exe
cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/mod2obs.exe
cd

echo "
echo " setup copies of files constant between all realizations "
PYe] s o N Naatalokaliakaliaialiaialiaialaliabaliahalialaliaialiahalialalelialalialaliahaliahaliaholialal el ook allakalla ol e ol el "

# directory for putting original base—case results in
od=original_average

if [ —d ${od} ]

then
echo ${od}" directory exists: removing and re-creating"
rm —rf ${od}

fi

mkdir ${od}
cd ${od}
echo ‘pwd‘

# link to wunchanged input files
for file in ‘cat ../ modflow_files.dat‘
do

In —sf ${file}

done

# link to averaged files computed in previous step
for f in {AR,K,S}
do
In —sf ../modeled_${f}_field.avg ./modeled_${f} _field .mod
done
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150

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort .34

echo "

echo " run original MODFLOW and DTRKMF and export results for plotting"

echo "

# run MODFLOW, producing average head and CCF
../ bin/mf2k/mf2k_1.6.release mf2k_head.nam

# run DTRKMF, producing particle track (from ccf)
../ bin/dtrkmf/dtrkmf v0100 <dtrkmf.in

# convert binary MODFLOW head output to Surfer ascii grid file format
In —sf ../ head_bin2ascii.py

python head_bin2ascii.py

mv modeled_head_asciihed.grd modeled_head_${od}.grd

# convert DIRKMF output from cells to X,Y and
# save in Surfer blanking file format

In —sf ../ convert_dtrkmf_output_for_surfer.py
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_${od}.bln

# extract head results at well locations and merge with observed
# head file for easy scatter plotting in FExzcel (tab delimited)
for file in ‘cat ../ mod2obs_files.dat"®
do

In —sf ${file}
done

In —sf ../ meas_head_2008ASER .smp

In —sf ../obs_loc.2008ASER . dat

../ bin/Builds/Linux /mod2obs. exe <mod2obs_head.in

In —sf ../ merge_observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${od}.txt

# go back down into root directory

cd

echo ‘pwd‘

echo A~~~ AA~AA~AA~AAAAAAAAAAAAAAAAAAAAAAAAA~AAA~AAAAA~AA~AA~AA~AA~AA~AA~AAAA~AA~AAAA~AAA~AA~AA~AA~AA~AA~AAA n
echo " setup and run PEST to optimize parametric surface to set BC "
P=Ye] s o N Naiaialalakaliakaliakalialolialalialiakaliakaliakalialolalolalalaliakalakaliolalialalelolalokalalalakalakalalalalalalohalakalakalalalel "
for p in pest_02

do

if [ —d ${p} |
then

28

| nfor mation Only



151

152

153

154

155

156

158

159

160

161

163

164

165

166

168

169

170

171

173

174

175

176

178

179

180

181

183

184

185

186

188

189

190

191

193

194

195

196

197

198

199

200

201

echo ${p}" directory exists: removing and re-creating"
m —rf ${p}
fi

mkdir ${p}

cd ${p}
echo ‘pwd‘

# link to wunchanged input files

for file in ‘cat ../ modflow_files.dat
do
In —sf ${file}

done

# link to averaged files computed in previous step
for f in {A R,K,S}

do

In —sf ../ modeled_${f} _field.avg ./modeled_${f} _field .mod
done

# link to mod20bs files (needed for pest)
for file in ‘cat ../ mod2obs_files.dat
do
In —sf ${file}
done

# link to pest files

for file in ‘cat ../${p}_files.dat"
do
In —s ${file}

done

# rename ’original ’ versions of files to be modified by pest
rm init_head .mod

In —sf ../Inputs/data/init_head .mod ./init_head_orig.mod

rm init_bnds.inf

In —sf ../Inputs/data/init_-bnds.inf ./init_bnds_orig.inf

# create new ibound array for easier modification during PEST
# optimization iterations
python boundary_types.py

# create the mecessary input files from observations
python create_${p}_input.py

# run pest
../ bin/Builds/Linux/pest.exe bc_adjust_2008ASER

# last output files should be best run
# extract all the stuff from that output
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227

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort .34

../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

In —sf ../ head_bin2ascii.py
python head_bin2ascii.py
mv modeled_head_asciihed.grd modeled_head_${p}.grd

In —sf ../ convert_dtrkmf_output_for_surfer.py
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_-${p}.bln

for file in ‘cat ../ mod2obs_files.dat‘
do

In —sf ${file}
done

../ bin/Builds/Linux /mod2obs. exe <mod2obs_head.in

In —sf ../ merge_observed_-modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${p}. txt

cd

done
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A-4.2 Python script average realizations.py

from math import loglO ,pow

nrow = 307

ncol = 284

nel = nrowxncol

nfr = 100 # number of fields (realizations)
nft = 4 # number of field types

debug = True

def floatload (

"""Reads file (a list of strings, one per row) into a list of strings.

f = open(f
m = [float
f.close ()

return m
types = [k’
# get list of
flist = open(’
runs = flist.r

flist .close ()

# initialize t

# set to True to get output described in RunControl
filename ):

ilename ,’r?)
(line.rstrip ()) for line in f]

A’,’R’,’S’]
100 best calibrated fields

keepers_short’,’r’)
ead ().strip ().split(’\n?)

o help speed lists up a bit

# nfr (100) realizations of each

fields = []

for i in xrange(nft):
fields .append ([None|* nfr)
for i in xrange(nfr):

# each
fields

# read in all
print ’reading
for i,run in e
print i,ru

for j,t in
fields

realization being nel (87188) elements
[-1][i] = [None]xnel

realizations
)
numerate (runs ):
n
enumerate (types):

[i][1][0:nel] = floatload (’Outputs/’+runt’/modeled_’+t+’ _field.mod’)

narrative

# save file with one cell from each realization for checking in FEzcel

if debug:
print ’wri
fd = open(
fd . write (’

(

for i,run

ting debugging output for checking’
’parameter_representative_values.txt’ ’w’)
%hs %18s %18s %18s %18s\n’%

rzn’ ,types [0] , types[1], types[2], types[3]))
in enumerate (runs):

fd.write(’%s %.14e %.14e ¥%.14e % .14e\n’ %

(run, fields [0][i][—1], fields [1][i][—1],
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fields [2][i][159%284], fields [3][i][159%284]))
fd.close ()

# open up files for writing
fh =[]
for t in types:
fh .append (open(’modeled_’+ t 4+’ _field.avg’,’w’))

# transpose fields to allow slicing across realizations , rather than
for j in range(len(types)):
fields [j] = zip (x(fields[j]))

print ’writing ...’
# do averaging across 100 realizations
for i in xrange(nel):
if i%10000 = 0:
print i
for h,d in zip(fh, fields):
h.write(’%18.11e\n’ % pow (10.0 ,sum(map(logl0 ,d[i]))/nfr) )

for h in fh:
h.close ()
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A-4.3 Python script boundary_types.py

from itertools import chain

nx = 284 # number columns in model grid
ny = 307 # number rows
nel = nxxny

def intload (filename ):
"""Reads file (a 2D integer array) as a list of lists.
OQuter list is rows, inner lists are columns."""

f = open(filename ,’r’)
m= [[int(v) for v in line.rstrip ().split ()] for line in f]
f.close ()

return m

def intsave (filename ,m):
""'"Writes file as a list of lists as a 2D integer array, format ’%3i’.

OQuter list is rows, inner lists are columns.

f = open(filename ,’w?)
for row in m:

f.

write(? ?.join ([’%2i” % col for col in row]) + ’\n’)

f.close ()

def floatload (filename ):
"""Reads file (a list of real numbers, one number each row)
into a list of floats."""

f = open(filename ,’r’)
m = [float (line.rstrip ()) for line in f]
f.close ()

return m

def reshapev2m(v):
"""Reshape a vector that was previously reshaped in C-major order

from a matrix, back into a matrix (here a list of lists).

m = [None]xny

for i,(lo,hi) in enumerate(zip(xrange(0,nel-nx+1,nx), xrange(nx,nel+1,nx))):

m[i] = v[lo:hi]

return m

# read in

original MODELOW IBOUND array (only 0,1, and —1)

ibound = intload (’init_bnds_orig.inf’)

# read in

initial heads

h = reshapev2m (floatload (’init_head_orig.mod’))

# discriminate between two types of constant head boundaries

# _1) (/H
# —2) CH,

where value > 1000 (area east of halite margin)
where wvalue < 1000 (single row/column of cells along domain
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for i,row in enumerate(ibound ):
for j,val in enumerate(row):
# is this constant head and is starting head less than 1000m ?
if ibound[i][j] = -1 and h[i][]j] < 1000.0:
ibound [1][]j] = -2

# save new IBOUND array that allows easy discrimination between types
# in python script during PEST optimization runs, and is still handled

# the same by MODFLOW since all ibound values < 0 are constant head.
intsave (’init_bnds.inf’ ,ibound)
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A-4.4 Python script create _pest_02_input.py

prefix = ’2008ASER’

## pest instruction file reads output from mod20bs
fin = open(’meas_head_’ + prefix + ’.smp’,’r’)

# each well is a [name,head] pair
wells = [[line.split ()[0],line.split ()[3]] for line in fin|
fin.close ()

fout = open(’modeled_head.ins’,’w’)
fout.write (’pif @\n’)
for i,well in enumerate(wells):
fout.write("11 [%s139:46\n" % well[0])
fout.close ()

# exponential surface used to set initial head everywhere

# except east of the halite margins, where the land surface is wused.
# initial guesses come from AP—114 Task report

params = [928.0, 8.0, 1.2, 1.0, 1.0, —1.0, 0.5]

pnames = [;a:7 ’b’, ’C’, ’d’, ;e;’ :f)7 ’exp’]

## pest template file
ftmp = open(’surface_par_params.ptf’,’w’)
ftmp. write (’ptf @\n’)
for n in pnames:

ftmp . write (’@ %s @\n’ % n)
ftmp . close ()

## pest parameter file

fpar = open(’surface_par_params.par’,’w’)
fpar.write(’double point\n’)
for n,p in zip (pnames,params):

fpar.write(’%s %.2f 1.0 0.0\n’ % (n,p))
fpar.close ()

## pest control file
f = open(’bc_adjust_’+ prefix +’.pst’,’w’)

f.write("""pcf

* control data

restart estimation

%i %i 1 01

1 1 double point 1 0 O
5.0 2.0 0.4 0.001 10

35

| nfor mation Only



50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

3.0 3.0 1.0E-3

0.1

30 0.001 6 6 0.0001 4

111

* parameter groups

bc relative 0.005 0.0001 switch 2.0 parabolic
mnn % (len (params),len(wells)))

f.write(’* parameter data\n’)
for n,p in zip (pnames,params):
if p > 0:
f.write(’%s none relative %.3f %.3f %.3f bc 1.0 0.0 1\n’ %
(n, p, —2.0xp, 3.0%p))

else:
f.write(’%s none relative %.3f %.3f %.3f bc 1.0 0.0 1\n’ %
(H, p, 30*p7 _20*p))
f.write("""* observation groups

ss_head
* observation data

")

## read in observation weighting group definitions
fin = open(’obs_loc_’+prefix+’.dat’,’r’)

location = [line.rstrip ().split ()[1] for line in fin|
fin.close ()

weights = []

for 1 in location:

# inside LWB

if 1 = ’07:
weights.append (2.5)

# near LWB

if 1 = "17:
weights.append (1.0)

# distant to LWB

if 1 = 27
weights.append (0.4)

for name,head,w in zip (zip (xwells)[0],zip(xwells)[1], weights):
f.write(’%s %s %.3f ss_head\n’ % (name,head ,w))

f.write("""* model command line

./run_02_model

* model input/output

surface_par_params.ptf surface_par_params.in

modeled_head.ins modeled_head.smp

")
f.close ()
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A-4.5 Python script surface 02_extrapolate.py

from itertools import chain
from math import sqrt

def matload (filename ):
"""Reads file (a 2D string array) as a list of lists.
Quter list is rows, inner lists are columns."""
f = open(filename ,’r’)
m = [line.rstrip ().split() for line in f]
f.close ()
return m

def floatload (filename ):
"""Reads file (a list of real numbers, one number each row)
into a list of floats."""

f = open(filename ,’r’)
m = [float (line.rstrip ()) for line in f]
f.close ()

return m

def reshapem2v(m):

"""Reshapes a rectangular matrix into a vector in same fashion

as numpy.reshape(), which is C-major order"""
return list (chain (%m))

def sign(x):
""" sign function"""
if x<0:
return —1
elif x>0:
return +1
else:
return 0

# read in modified IBOUND array, with the cells to modify set to
ibound = reshapem2v(matload(’init_bnds.inf’))

h = floatload (’init_head_orig.mod’)
# these are relative coordinates, —1 <= x,y < +1
x = floatload (’rel_x_coord.dat’)

y = floatload (’rel_y_coord.dat’)

# unpack surface parameters (one per line)
# 2z =A + Bx(y + Dxsign(y)xsqrt(abs(y)))+Cx(Exzxx3 — Fxzxx2 — z)

finput = open(’surface_par_params.in’,’r’)
try:
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50 a,b,c,d,e,f ,exp = [float (line.rstrip()) for line in finput]
51 except ValueError:

52 # python doesn’t like D’ in 1.2D—4 notation used by PEST sometimes.
53 finput .seek (0)

54 lines = [line.rstrip() for line in finput]

55 for i in range(len(lines)):

56 lines[i] = lines[i].replace(’D’,’E?)

57 a,b,c,d,e,f,exp = [float(line) for line in lines]|

58

so finput.close ()

60

o1 # file to output initial/boundary head for MODFLOW model

62 fout = open(’init_head.mod’ ,’w’)

63 for i in xrange(len (ibound)):

64 if ibound[i] == ’-2’ or ibound[i] = ’1’:

65 # apply surface to active cells (ibound=1) —> starting guess

66 # and non—geologic boundary conditions (ibound=—2) —> constant head
67 if y[i] = 0:

68 fout.write(’%.7e \n’ % (a + cx(exx[i]**3 + fxx[1]*%x2 — x[i])))
69 else:

70 fout.write(’%.7e \n’ % (a + bx(y[i] + dxsign(y[i])*xabs(y[i])**xexp) +
7 cx(exx[i]**x3 + fxx[i]**x2 — x[i])))

72 else:

73 # use land surface at constant head east of halite boundary

74 # ibound=0 doesn’t matter (inactive)

75 fout.write(’%.7e\n’ % h[i])

76

7 fout.close ()
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A-4.6 Bash shell script run_02_model

#1/bin/bash

#echo ’step 1: surface extrapolate’
python surface_02_extrapolate.py

# run modflow

#echo ’step 2: run modflow’

../ bin/mf2k/mf2k_1.6.release mf2k_head.nam >/dev/null
# run mod2obs

#echo ’step 3: extract observations’

../ bin/Builds/Linux/mod2obs. exe < mod2obs_head.in >/dev/null
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A-4.7 Python script head bin2ascii.py

import struct

class FortranFile(file):

modified from May 2007 Enthought-dev mailing list

post by Neil Martinsen-Burrell"""

def

def

def

def

__init__(self ,fname, mode="r’, buf=0):
file.__init__(self, fname, mode, buf)

self .ENDIAN = <> # [ittle endian

self.di =4 # default integer (could be 8 on G4—bit)

readReals (self , prec="f’):
"""Read in an array of reals (default single precision)
with error checking"""
# read header (length of record)
1 = struct.unpack(self .ENDIAN+’i’ self.read(self.di))[0]
data_str = self.read (1)
len_real = struct.calcsize (prec)
if 1 % len_real != 0:
raise IOError(’Error reading array of reals from data file’)
num = 1/len_real
reals = struct.unpack(self .ENDIAN+str (num)+prec,data_str)
# check footer
if struct.unpack(self . ENDIAN+’i’ self.read(self.di))[0] != 1:
raise IOError(’Error reading array of reals from data file’)
return list (reals)

readInts(self):

"""Read in an array of integers with error checking
1 = struct.unpack(’i’,self.read(self.di))[0]
data_str = self.read(1l)

len_int = struct.calcsize(’i?)

if 1 % len_int != 0:

raise IOError(’Error reading array of integers from data file’)

num = 1/len_int
ints = struct.unpack(str (num)+’i’,data_str)
if struct.unpack(self . ENDIAN+’i’, self.read(self.di))[0] != 1:

raise IOError(’Error reading array of integers from data file’)
return list (ints)

readRecord (self):
"""Read a single fortran record (potentially mixed reals and ints)"""
dat = self.read(self.di)
if len(dat) = 0:
raise IOError(’Empy record header’)
1 = struct.unpack(self .ENDIAN+’i’  dat)[0]
data_str = self.read(1)
if len(data_str) != 1:
raise IOError(’Didn’’t read enough data’)
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check = self.read(self.di)
if len(check) != 4:
raise IOError(’Didn’’t read enough data’)
if struct.unpack(self .ENDIANt->i’  check)[0] != 1:
raise IOError(’Error reading record from data file’)
return data_str

def reshapev2m (v,nx,ny):
"""Reshape a vector that was previously reshaped in C-major order
from a matrix, back into a C-major order matrix (here a list of lists).
m = [None]*ny
n = nx*ny
for i,(lo,hi) in enumerate(zip (xrange(0,n—nx+1,nx), xrange(nx,n+1,nx))):
m[i] = v[lo:hi]
return m

def floatmatsave(filehandle ,m):
"""Writes array to open filehandle, format ’568%el2.5°.
Quter list is rows, inner lists are columns."""

for row in m:
f.write(’’.join ([’ %12.5e¢’ % col for col in row]) + ’\n’)

# open file and set endian—ness
ff = FortranFile(’modeled_head.bin’)

# currently this assumes a single—layer MODFLOW model
# (or at least only one layer of output)

# format of MODFLOW header in binary layer array

fmt = ’<2i2f16s3i”’

# little endian, 2 integers, 2 floats,

# 16—character string (4 element array of 4j—byte strings), & integers

while True:
try:
# read in header

h = ff.readRecord()

except IOError:
# exit while loop

break
else:
# unpack header
kstp ,kper, pertim , totim , text ,ncol ,nrow,ilay = struct.unpack(fmt, h)

# print status/confirmation to terminal
print kstp,kper ,pertim ,totim ,text ,ncol ,nrow,ilay

h = ff.readReals()
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ff.close ()

xmin, xmax
ymin, ymax =
hmin = min (h)
hmax = max(h)

(601700.0,630000.0)
(3566500.0,3597100.0)

# write output in Surfer ASCII grid format

f = open(’modeled_head_asciihed.grd’ ,’w’)
f.write("""DSAA

hi hi

%holf %.1f

%ho1f %.1f

%.8e % .8e

men %(ncol ,nrow ,xmin , xmax, ymin , ymax, hmin , hmax) )
hmat = reshapev2m (h, ncol ,nrow)

# MODFLOW starts data in upper—left corner
# Surfer expects data starting in lower—left corner

# flip array in row direction

floatmatsave (f ,hmat[:: —1])
f.close ()
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A-4.8 Python script merge observed modeled heads.py

fobs
fmod
fwgt
fout

fout . write (’\t’.join ([ ?#NAME’ ,’0OBSERVED’ ,’MODELED’ ,’WEIGHT’])+’\n’)

open (
= open(
= open(

(

= open

’meas_head_2008ASER.smp’,’r’)
"modeled_head.smp’,’r’)
’obs_loc_2008ASER.dat’)
’both_heads.smp’,’w’)

for obs,mod,w in zip (fobs , fmod, fwgt):

fobs.
fmod.
fwgt .
fout .

fout.write(’\t’.join ([obs.split ()[0],obs.split ()[3],mod.split ()[3],

w.rstrip ().split ()[1]])+’\n")
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A-4.9 Python script convert dtrkmf output_for_surfer.py

# grid origin for dtrkmf cell —> x,y conversion

x0 = 601700.0
y0 = 3597100.0

dx = 100.0
dy = 100.0

fout = open(’dtrk_output.bln’, ’w’)

# read in all

results for saving particle tracks

fin = open(’dtrk.out’,’r’)
results = [1.split() for 1 in fin.readlines ()[1:]]

fin.close ()

npts = len(results)

# write Surfer

blanking file header

fout.write (?%i,1\n’> % npts)

# write x,y location and time
for pt in results:

X

float (pt[1])*dx + x0

y = y0 — float (pt[2])*dy

t = float (pt[0])/7.75%4.0 # convert 7.75m to Jm Cuelbra thickness

fout.write (’%.1f,%.1£,%.8e\n’> % (x,y,t))

fout . close ()
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